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We present stochastic, finite-population formulations of the Crow-Kimura and Eigen models of quasispecies
theory, for fitness functions that depend in an arbitrary way on the number of mutations from the wild type. We
include back mutations in our description. We show that the fluctuation of the population numbers about the
average values is exceedingly large in these physical models of evolution. We further show that horizontal gene
transfer reduces by orders of magnitude the fluctuations in the population numbers and reduces the accumu-
lation of deleterious mutations in the finite population due to Muller’s ratchet. Indeed, the population sizes
needed to converge to the infinite population limit are often larger than those found in nature for smooth fitness
functions in the absence of horizontal gene transfer. These analytical results are derived for the steady state by
means of a field-theoretic representation. Numerical results are presented that indicate horizontal gene transfer
speeds up the dynamics of evolution as well.
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I. INTRODUCTION

Biological populations in nature are finite. In particular, it
is clear that the number of individuals in a population is
much smaller than the number of possible genetic sequences,
even for genomes of modest length. For example, the largest
populations observed in biological systems, RNA viruses, are
on the order of N=1012 viral particles within a single in-
fected organism �1�. These viruses possess a relatively short
genome of length L�103–104 bases �1�, and hence, the the-
oretical size of the sequence space is 4L�106000�N. Even
the region of phase space for which fitness is high is typi-
cally much larger than the biological population size. From
this example, it is clear that no real biological population will
be able to sample the entire sequence space during evolution-
ary dynamics �2�, and therefore, finite population size effects
may be important for a realistic description of evolution �3�.
Finite populations with asexual reproduction are subject to
the “Muller’s ratchet” effect �4�, which is the tendency to
accumulate deleterious mutations in finite populations �4–6�.
It has been suggested that horizontal gene transfer and re-
combination may provide a way to escape Muller’s ratchet in
small populations �7–10�, and this mechanism has been pro-
posed as one of the evolutionary advantages of sex, despite
the additional mutational load for fitness functions with posi-
tive epistasis �4–6,9,11–14�. The role of the finite population
size in the Muller’s ratchet effect has been previously studied
by the traveling-wave approximation �15,16�. This theoreti-
cal approach introduces an approximate treatment, by assum-
ing deterministic dynamics for the bulk of the population,
but stochastic dynamics for the edge composed of the class
of highest fitness genotypes. The deterministic component of
this theory, which considers single point mutations coupled
to replication, is similar to traditional quasispecies models
for infinite populations. These previous studies considered
only linear fitness functions and analyzed in detail the case
of no back mutations, an approximation which changes the
dynamics and leads to a different steady-state distribution.
An exception is the model in Ref. �33�, which presents a

mean-field approximation which incorporates single back
mutations in a linear fitness.We include here back mutations
and consider fitness functions that depend in an arbitrary way
on the number of mutations from the wild type in our exact
description.

Quasispecies models for molecular evolution, represented
by the Crow-Kimura model �17� and the Eigen model
�18–21� are traditionally formulated in the language of
chemical kinetics. That is, they describe the basic processes
of mutation and selection in an infinite population of self-
replicating, information encoding molecules such as RNA or
DNA, which are assumed to be drawn from a binary alphabet
�e.g., purines/pyrimidines�. These models exhibit a phase
transition in the infinite genome limit �18–26�, separating an
organized or quasispecies phase from a disordered phase.
This phase transition occurs when the mutation rate exceeds
a critical value, which depends on the nature of the fitness
function �25,27�. The phase transition is usually of first order
for binary alphabets �25,27�, but it is of higher order for
smooth fitness functions in larger alphabets �28�. The qua-
sispecies is composed of a collection of nearly neutral mu-
tants, that is, a cloud of closely related individuals sharing
similar fitness values, rather than by a single sequence type.
Despite its abstract character, the quasispecies model has
been successfully applied to interpret experimental studies in
RNA viruses �29–32�.

II. FINITE POPULATION EFFECTS IN THE
CROW-KIMURA MODEL

In the infinite population limit, the mean-field approach
that is customary in chemical kinetics is justified, and the
evolution of the probability distribution of sequence types
can be described by a deterministic system of differential
equations. This mean field approach cannot capture the fluc-
tuations in the numbers of individuals with different se-
quences, which are a consequence of the stochastic dynamics
of the process. An accurate description of all aspects of a
finite population, therefore, requires a master equation for-
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mulation �3�. We here consider arbitrary fitness functions.
The special case of linear fitness functions f���=a�, has been
analyzed in �15,16,33�.

We consider a finite population, composed of N�� bi-
nary purine/pyrimidine sequences, of length L. The terms in
the master equation for the Crow-Kimura, or parallel, model
are �i� a replication term, whereby each individual of se-
quence Si reproduces at a rate Lf�Si� and the offspring re-
places a random member of the population, �ii� a mutation
term, whereby each base in a sequence mutates at a rate �
per unit time, and �iii� a horizontal gene transfer term,
whereby bases in a sequence are replaced at rate � per unit
time with bases randomly chosen from the population. We
assume that the replication rate, or microscopic fitness, is a
function of the Hamming distance from the wild-type ge-
nome, and hence of the one-dimensional coordinate 0��
�L representing the alignment of an individual’s sequence
with the wild type. The master equation can be exactly pro-
jected onto the � coordinate and defines the rates at which the
sequences of individuals change with time due to replication,
mutation, and horizontal gene transfer. We define �1+u� /2 to
be the probability of a wild-type letter in the sequence, 	


= �1
u� /2 is the probability of inserting a wild-type or non-
wild-type letter by horizontal gene transfer �27,34�, and

u =
1

N
�
�=0

L

�2�/L − 1�n� �1�

is the “average base composition,” where n� is the number of
individuals at coordinate �.

We formulate the master equation for the probability dis-
tribution P��n�� ; t�, as a function of the set of occupation
numbers �n��0���L. As in the classical, infinite population
Crow-Kimura model �17�, we consider point mutation with
rate �, and replication with a rate r���=Lf���, while preserv-
ing the population size N. In addition, we consider horizontal
gene transfer of single letters between an individual sequence
and the population, with rate �.

The master equation describing this process is

�

�t
P��n��� =

1

N
�

����

r�����n� − 1��n�� + 1�P�n� − 1,n�� + 1�

− n�n��P��n���� + ��
�=0

L

��L − ���n� + 1�

�P�n� + 1,n�+1 − 1� + ��n� + 1�

�P�n�−1 − 1,n� + 1� − Ln�P��n����

+ ��
�=0

L

�	+�L − ���n� + 1�P�n� + 1,n�+1 − 1�

+ �	−�n� + 1�P�n�−1 − 1,n� + 1�

− n��	+�L − �� + 	−��P��n���� . �2�

Note that this exact master equation includes “back mu-
tations” often ignored in the literature �15,16�. Note that the
approximation of setting back mutations to zero leads to both
different dynamics and a different steady state.

A. Mapping to a field theory

We seek analytical expressions for the fluctuations in
number of individuals with given sequence compositions in
the finite population parallel model. We derive these results
by means of a field-theoretic method �25,35,36�. This ap-
proach provides a system of coupled differential equations
for the probability distribution and the fluctuation of num-
bers of individuals with given sequence composition, whose
computational solution is essentially instantaneous. These re-
sults give us the fluctuation and correlation in population
numbers and are an exact expansion in the inverse of the
population size. We present an exact representation of the
classical master equation in terms of a many-body quantum
theory �25�. For that purpose, we define the population state
vector

	��t�
 = �
�n��

P��n��;t�	�n��
 , �3�

with

	�n��
 = 	n0,n1, . . . ,nL
 = �
�=0

L

� 	n�
 . �4�

This population state vector evolves according to a
Schrödinger equation in imaginary time,

d

dt
	��t�
 = − Ĥ	��t�
 , �5�

which possesses the formal solution

	��t�
 = e−Ĥt	��0�
 , �6�

with 	��0�
= 	�n�
0�
 representing the initial configuration of

the population. The master equation is written in second
quantized form, with a Hamiltonian expressed in terms of
boson creation and destruction operators �â� , â��

† �=
�,��,
whose action over the occupation number vectors is defined
by â�	n�
=n�	n�−1
, and â�

†	n�
= 	n�+1
. The Hamiltonian is
given by

− Ĥ =
1

N
�

�,��=0

L

Lf���â�
†�â�

† − â��
† �â�â�� + ��

�=0

L

��L − ��

��â�+1
† − â�

†�â� + ��â�−1
† − â�

†�â�� + ��
�=0

L

�	+�L − ���â�+1
†

− â�
†�â� + 	−��â�−1

† − â�
†�â�� . �7�

The terms proportional to f represent replication, � represent
mutation, and � represent horizontal gene transfer. The popu-
lation average of a �normal ordered� classical observable,
represented by the operator F��â���, is obtained by the inner
product with the “sum” �35� bra � · 	= �0	���=0

L eâ��,

�F
 = � · 	F��â���	��t�
 = � · 	F��â���e−Ĥt	�n�
0�
 . �8�

A Trotter factorization is introduced for the evolution opera-

tor e−Ĥt in a basis of coherent states, defined as â�	z�

=z�	z�
. This procedure leads to a path integral representation
�25,27,28�,
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�F
 =
 �Dz�Dz�F��z��t/����e−S��z��,�z��. �9�

Here z is the coherent state field of the second quantized
theory of the parallel model, and S is the corresponding ac-
tion. The action in the exponent of Eq. �9� is given, after the
change of variables z�=1+ z̄, in continuous time by

S��z̄�,�z�� = �
�=0

L 

0

T

dt���z̄��t��z��t�� − n�
0 ln�1 + z̄��t����
�t��

+ z̄�

�z�

�t�
− ���L − ��z̄�+1 + �z̄�−1 − Lz̄��z� − ���L

− ��	+z̄�+1 + �	−z̄�−1 − ��L − ��	+ + �	−�z̄��z�

−
1

N
�
��=0

L

Lf����1 + z̄���z̄� − z̄���z�z��� �10�

In the limit of a large population, we look for a saddle point
in the action Eq. �10�. From the condition 
S


z��t�
	c=0, we ob-

tain z̄�
c�t�=0. From the condition 
S


z̄��t�
	c=0, we find the

saddle-point solution z�
c�t�=NP��t�, where P� satisfies the dif-

ferential equation for infinite population quasispecies theory,
generalized to include horizontal gene transfer �27,34�:

d

dt
P� = ���L − � + 1�P�−1 + �� + 1�P�+1 − LP�� + ��	+�L − �

+ 1�P�−1 + 	−�� + 1�P�+1 − ��L − ��	+ + �	−�P��

+ �r��� − �
��=0

L

r����P���P�. �11�

Details are given in Appendix A.

B. Fluctuations

To calculate fluctuations, we expand the action up to sec-
ond order, to obtain the correlation matrix �
z��t�
z���t�

=C�,���t�, which in continuous time evolves according to the
Lyapunov equation

d

dt
C = AC + CAT + B , �12�

subject to the initial condition C�,���0�=−n�
0
�,��. Here, the

matrices A and B are defined by

�A��,�� = 
�−1,���L − � + 1��� + �	+� + 
�,���Lf���

− �
�1

Lf��1�P�1
− ���L − ��	+ + �	−� − L�� + L�f���

− f�����P� + 
�+1,���� + 1��� + �	−� , �13�

�B��,�� = 
�,��2Lf���NP� − L�f��� + f�����NP�P��. �14�

See Appendix B for details in the derivation.
The fluctuations in the number of individuals with a given

sequence composition are obtained from the relation

�
n��2

N2 =
1

N
�P� +

1

N
C�,�� . �15�

C. Continuous and discontinuous fitness functions

We consider two example fitness functions, which exhibit
a quasispecies phase transition in the infinite genome length
limit L→�. The sharp peak represents the extreme case of
the wild-type sequence replicating at a high rate, and all
other sequences replicating at a single lower rate. The sharp
peak fitness function represents a very strong selective ad-
vantage for the wild type. For the sharp peak f���=A
�,L,
from Eq. �11� and large L, we find that the wild-type prob-
ability

d

dt
PL � LAPL�1 − PL� − L�� + �	−�PL. �16�

At steady state, taking into account that u=1−O�L−1� for the
sharp peak, we have 	−= �1−u� /2=O�L−1�, and after Eq.
�16� we find

P�=L = � 0,
�

A
� 1

1 − �/A + O�L−1� ,
�

A
� 1.� �17�

Notice that the steady-state distribution is not affected by
horizontal gene transfer ���0�. To obtain the fluctuations in
the probability distribution, we consider Eq. �12� for the ma-
trix element CL,L. The terms CL,L
1 are O�L−1�. We also no-
tice that ��1=0

L C�1,L=−NPL, to find that the stationary solution
of Eq. �12� is given by

0 = LANPL�1 − PL� − �LCL,L − �	−LCL,L + LA�1 − PL�CL,L

− LANPL
2 − LAPLCL,L

= ANPL�1 – 2PL� + ��A − � − �	−� − 2APL�CL,L. �18�

From Eq. �16�, we have A−�−�	−=APL, and substituting
into Eq. �18� we obtain

CL,L = N�1 – 2PL� . �19�

Substitution of this result into Eq. �15� shows that the fluc-
tuation is given by

��
n�=L�2
/N2 = � 0, �/A � 1

�/�NA� , �/A � 1,
� �20�

a result first given in �37� by a different method.
The second fitness function we consider is one for which

the replication rate decreases continuously as a function of
the Hamming distance from the wild type. In particular, we
choose a quadratic fitness f���= �k /2��2� /L−1�2. The qua-
dratic fitness is a model of continuous fitness function, for
which mutants reproduce more slowly than the wild type, in
a way that depends continuously on the Hamming distance
from the wild type. Figure 1 shows that horizontal gene
transfer reduces by orders of magnitude the fluctuations in
number of individuals with a given sequence composition,
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n�. Indeed, a small rate of horizontal gene transfer is enough
to reduce by several orders of magnitude these fluctuations,
as compared to the case without horizontal gene transfer, �
=0.

The linear fitness function f���=A� /L was considered in
�33� and in �15,16� in the absence of back mutations. The
steady state exhibits no phase transition for the linear fitness.
We skip this example in favor of the forms considered above.

D. Stochastic simulations

We performed Lebowitz/Gillespie simulations �38,39�, in
which we explicitly simulate a population of size N under-
going the stochastic processes of mutation, horizontal gene
transfer, and replication. In Figs. 2 and 3, we compare our
theory with stochastic simulations, at different rates of hori-
zontal gene transfer. The results obtained from stochastic
simulations converge toward the theoretical value calculated
from Eqs. �11� and �12� as the size of the population, N,
increases. Nonzero horizontal gene transfer rates both reduce
fluctuations and accelerate convergence toward the infinite-
population value of the mean fitness.

In Fig. 4, the steady-state probability distribution obtained
from the numerical solution of Eq. �11� is compared with the
distributions obtained from stochastic simulations, for differ-
ent sizes, N, of the population. The convergence with N to-
ward the infinite-population limit is more rapid for nonzero
�. Indeed, for smooth fitness functions, the infinite popula-
tion limit is only reached for population sizes larger than
those commonly found in nature. For the discontinuous sharp
peak fitness function, on the other hand, fluctuations are
small, Eq. �20�, and the convergence to the infinite popula-
tion limit is rapid.

Another point from Fig. 3 is that horizontal gene transfer
speeds up the rate of evolution. We see that the convergence
to the steady state is more rapid for increased horizontal gene
transfer rates. Numerical experiments have shown that the
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FIG. 1. Fluctuation in the number of individuals with a given
sequence composition. The quadratic fitness is used in the parallel
model, with L=200 and k=4.0. The theory is obtained from Eqs.
�11� and �12�. Fluctuations decrease by orders of magnitude with
increasing horizontal gene transfer rate, �.
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FIG. 2. Stochastic results obtained by averaging over 50 inde-
pendent Gillespie simulations, are shown and compared with ana-
lytical theory, for �=7.0.

0 5 10 15 20
Time (µ-1

)

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

co
m

po
si

tio
n,

u(
t)

ν / µ= 7

ν / µ = 2

ν / µ = 0

FIG. 3. The average composition as a function of time, averaged
over 50 independent Gillespie simulations, with population size N
=104 �solid curves�. Also shown are one standard deviation enve-
lopes 
��t� �dotted curves�. The steady-state averages
�u

���
u�2
 are displayed as solid lines for reference.

-1 -0.5 0 0.5 1
2 ξ/L - 1

0

0.02

0.04

0.06

0.08

P
ξ

Theory, N = ∞

Stochastic, N = 10
4

Stochastic, N = 2 x 10
4

-1 -0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

ν / µ = 0
ν/ µ = 7

FIG. 4. �Color online� Finite population versus infinite popula-
tion results for the probability distribution of the parallel model
with quadratic fitness. Note that the Muller’s ratchet phenomenon,
whereby fitness is reduced for finite populations, is greatly sup-
pressed for ��0. Here, k=4 and L=200, and the stochastic results
are obtained by averaging over 50 independent numerical
experiments.
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effect of horizontal gene transfer on the rate of evolution is
especially dramatic for rugged fitness landscapes �40,41�. At
the local scale, biological fitness landscapes may be rela-
tively smooth. At larger genetic distances, however, we ex-
pect biological fitness landscapes to be rugged. Correlations
exist in the rugged landscape, and horizontal gene transfer
couples to those correlations in a way that allows evolution
to speed up dramatically �42�. We expect that this speedup of
evolution on rugged landscapes is one of the most significant
effects of horizontal gene transfer in biology.

Note that when �=0 the number fluctuations for the case
of fitness functions for which the population is not exponen-
tially localized at �=L �i.e., continuous fitness functions� are
large in comparison to the fluctuations for a localized popu-
lation, e.g., sharp peak. Another way to see this effect is
shown in Fig. 5, where for �=0, the convergence to N→� is
slow.

As a final remark, we tested the validity of the description
of the stochastic process in the language of Hamming dis-
tance classes, as used in our theory. For that purpose, we
performed numerical experiments with Lebowitz-Gillespie
simulations with both a finite population of explicit se-
quences �27�, and the analogous system in the representation
of Hamming distance classes. As expected from a simple
argument based on permutation invariance of the fitness
function that shows the stochastic class dynamics is an exact
projection of the stochastic sequence dynamics, both descrip-
tions yield exactly the same statistics, as shown in Fig. 6.

III. THE EIGEN MODEL

We now turn to the Eigen model. In contrast to the paral-
lel model, mutation, and horizontal gene transfer are as-
sumed to occur only during replication in the Eigen model.
That is, multiple mutations occur along each sequence as a

consequence of errors in the replication process, and during
this process horizontal gene transfer with probability � /L per
letter can also occur. The transfer matrix for mutations from
class �� into class � is denoted by Q�,�� �25�,

Q�,�� = �
�1=0

min��+��,2L−��+����

qL−�2�1+	��−�	�

� �1 − q�2�1+	�−��	� L − ��

�1 +
	�� − �	 − �� + �

2
�

� � ��

�1 +
	�� − �	 + �� − �

2
� . �21�

Here, q�1 characterizes the fidelity in the replication pro-
cess, when 1−q is the probability �per site� that an incorrect
letter is placed by the polymerase enzyme. Note that ’back
mutations’, often ignored in the literature, are included in the
Eigen model. There is also random degradation of individu-
als with rate Ld. We again seek to calculate shifts in the
average population distribution as well as fluctuations about
the average for a finite population of individuals following
the dynamics of the Eigen model master equation. Here,
terms proportional to �1−� /L� represents the evolutionary
processes of replication and multiple mutations in the ab-
sence of horizontal gene transfer. On the other hand, the
terms proportional to � /L represent the coupled sequential
processes of replication, horizontal gene transfer and mul-
tiple mutations. We also consider the possibility of degrada-
tion through terms proportional to the degradation rate d���.
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Kimura model, obtained from stochastic simulations using the
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lation, in the absence of horizontal gene transfer �=0. Convergence
toward the theoretical curve Eq. �12� �solid line� is observed. Here
L=200, and the quadratic fitness with k=4.0 and �=1 was
considered.

-1 -0.5 0 0.5 1
2 ξ/L - 1

0

0.02

0.04

0.06

0.08

0.1

P
ξ

Stochastic, classes
Stochastic, explicit sequences

FIG. 6. Probability distributions for the Crow-Kimura model,
obtained from stochastic simulations using the Gillespie method
with explicit sequences or alternatively with Hamming distance
classes. Clearly both descriptions are statistically identical. Here,
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�

�t
P��n��� = �1 −

�

L
���

�=0

L

r���Q�,���n� − 1� �
����

n�� + 1

N
P�n� − 1,n�� + 1� − n� �

����

n��

N
P�n�,n����

+ �
�=0

L

r��� �
����

Q��,��n�

n� + 1

N
P�n� + 1,n�� − 1� − �n� − 1�

n�

N
P�n�,n���� + �

�=0

L

r��� �
����

Q��,��n� �
�����,������

n�� + 1

N

� P�n�� − 1,n�� + 1� − n� �
�����,������

n��

N
P�n��,n����� + �

�=0

L

d�����n� + 1� �
����

n�� − 1

N
P�n� + 1,n�� − 1�

− n� �
����

n��

N
P�n�,n���� + �

�,��=0

L

Q��,�+1
�

L
	+�L − ��r���n� �

�����,������
�n�� + 1

N
P�n�� − 1,n�� + 1� −

n��

N
P�n��,n����

+ �
�,��=0

L

Q��,�−1
�

L
	−�r���n� �

�����,������
�n�� + 1

N
P�n�� − 1,n�� + 1� −

n��

N
P�n��,n���� . �22�

A. Mapping to a field theory

By the same method as in the parallel model, we map the master equation into a second quantized formulation, with
Hamiltonian

− Ĥ = �1 −
�

L
��L/N� �

�,��,��=0

L

Q��,�f���â�
†�â��

† − â��
† �

� â�â�� + �L/N� �
�,��=0

L

d����â�
†�â�

† − â��
† �â�â�� + �L/N� �

�,��,��=0

L

Q��,�+1��/L�	+�L − ��f���â�
†�â��

† − â��
† �â�â��

+ �L/N� �
�,��,��=0

L

Q��,�−1��/L�	−�f���â�
†�â��

† − â��
† �â�â��. �23�

With a similar method as in the parallel model, we introduce coherent states in a Trotter factorization of the evolution operator,
as defined in Eq. �8�. From this procedure, we derive the field theory for the Eigen model as well. In this case, the action given
by

S��z�,�z̄�� = �
�=0

L 

0

T

dt�� z̄�

�z�

�t�
+ �z̄��t��z��t�� − n�

0 ln�1 + z̄��t����
�t�� −
L

N
�1 −

�

L
� �

��,��=0

L

Q��,�f����1 + z̄���z̄�� − z̄���z�z��

−
L

N
�

��,��=0

L �
�,��d���� +
�

L
�Q��,�+1	+�L − �� + Q��,�−1	−��f�����1 + z̄���z̄�� − z̄����z�z��. �24�

In the limit of a large population, we look for a saddle point in the action Eq. �24�. From the condition 
S

z��t�

	c=0, we obtain
z̄�

c�t�=0. From the second equation 
S

z̄��t�

	c=0, we find that P��t�=z�
c�t� /N satisfies the differential equation

d

dt
P��t� = �1 −

�

L
�� �

��=0

L

Q�,��r����P���t� − P��t� �
��=0

L

r����P���t�� − P��t��d��� − �
��=0

L

P���t�d�����
+

�

L��
��=0

L

�Q�,��+1	+�L − ��� + Q�,��−1	−���r����P���t� − P��t� �
��=0

L

�	+�L − ��� + 	−���r����P���t�� �25�

and the initial condition corresponds to P��0�=n�
0 /N, as derived in Appendix C. This is exactly the differential equation for

P��t� from infinite population quasispecies theory �27,34�.
By expanding the action Eq. �24� up to second order to calculate the matrix of correlations, as shown in Appendix D, we

obtain in the continuous time limit the Lyapunov Eq. �12�, with matrices A defined by
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L−1�A��,�� = �1 −
�

L
�� �

��=0

L

Q�,��f����P�� + Q�,��f���� − 
�,�� �
��=0

L

f����P�� − f����P�� + �d���� − d����P�

+ 
�,����
�1=0

L

d��1�P�1
− d���� +

�

L��
��=0

L

�Q�,��−1	−�� + Q�,��+1	+�L − ����f����P�� + �Q�,��−1	−�� + Q�,��+1	+�L

− ����f���� − 
�,�� �
��=0

L

�	+�L − ��� + 	−���f����P�� − �	+�L − ��� + 	−���f����P�� �26�

and matrices B given by

L−1�B��,�� = N��1 −
�

L
��Q��,�f���P� + Q�,��f����P�� − �f��� + f�����P�P��� + 2��

�1=0

L

d��1�P�1�P�
�,�� +
�

L
��Q��,�+1	+�L − ��

+ Q��,�−1	−��f���P�� + �Q�,��+1	+�L − ��� + Q�,��−1	−���f����P�� − ��	+�L − �� + 	−��f��� + �	+�L − ���

+ 	−���f�����P�P�� − �d��� + d�����P�P��� . �27�

B. Continuous and discontinuous fitness functions

For the sharp peak f���= �A−A0�
�,L+A0, for the Eigen
model in the absence of horizontal gene transfer ��=0�, we
obtain that the wild-type probability is

�
��=0

L

q���1 − q�L−��f����P�� − PL�APL + A0 �
���L

P��� = 0.

�28�

Since q�1, �the fidelity in the replication process is very
high�, then 1−q�1 and Eq. �28� becomes.

qLAPL − PL��A − A0�PL + A0� = 0 �29�

By defining qL=e−�, we obtain for the probability of the wild
type

P�=L = � 0, A � e�A0

�e−�A − A0�/�A − A0� , A � e�A0.
� �30�

For the correlation matrix, we define D�,��= 1
NC�,��, and find

that the stationary solution for DL,L in the absence of degra-
dation d���=0 is given by

0 =
1

N
BL,L + �

�1=0

L

�AL,�1
D�1,L + AL,�1

D�1,L� . �31�

From this equation, we find ��1
AL,�1

D�1,L=− 1
2NBL,L. Hence,

expanding the left hand side explicitly, we find

�
�1=0

L ��
��=0

L

QL,��f����P�� + QL,�1
f��1�

− ��
�1�

f��1��P�1��
L,�1
− f��1�PL�D�1,L

= − �QL,Lf�L�PL − f�L�PL
2� . �32�

Expanding this equation when L is large and q�1, we find

�qLA − �A − A0�PL − A0 − �A − A0�PL�DL,L

= APL�PL − qL� + qLAPL
2 − A0PL

2 . �33�

Substituting the result PL=
qLA−A0

A−A0
from Eq. �30�, we find

DL,L =
1

�A − A0�2 �AA0 − A0
2 − �qLA�2 + qLAA0� . �34�

The fluctuation in the number of individuals with the wild-
type sequence is obtained from Eq. �15�,

��
n�=L�2

N2 = � 0, A � e�A0

e−��1 − e−��A2

N�A − A0�2 , A � e�A0. � �35�

For smooth fitness functions, there are large fluctuations
in the population numbers in the absence of horizontal gene
transfer. In Fig. 7, we present the fluctuations in the number
of individuals with a given sequence for the quadratic fitness,
as predicted from our theory Eqs. �25�–�27�. A moderate
horizontal gene transfer rate reduces by orders of magnitude
the fluctuations. In Fig. 8 inset, we present the equilibrium
probability distributions, for different rates of horizontal
gene transfer, as obtained from our theory for the quadratic
fitness f���= �k /2��2� /L−1�2 /2+1. For this fitness function
with negative epistasis, horizontal gene transfer reduces the

QUASISPECIES THEORY FOR FINITE POPULATIONS PHYSICAL REVIEW E 81, 011902 �2010�

011902-7



mean fitness in the infinite population limit �27�.

IV. CONCLUSION

For both the parallel and Eigen models, we have found
that horizontal gene transfer reduces by orders of magnitude
the fluctuations in the number of individuals with a given
sequence composition for smooth fitness functions, such as
quadratic. Horizontal gene transfer also reduces the variabil-
ity within and between independent experiments for smooth
fitness functions. Finally, horizontal gene transfer substan-
tially reduces the “Muller’s ratchet” phenomenon, whereby
fitness is reduced in finite populations relative to the infinite
population limit. For the sharp peak fitness, horizontal gene
transfer does not modify the steady-state distribution of fluc-
tuations.

The reduction in finite populations by horizontal gene
transfer of both the magnitude of the Muller’s ratchet phe-
nomenon �7–9� and the fluctuations in population numbers
should be observable in experiments. The fluctuation in
population numbers can be measured either at different time
points in long experiments or as fluctuations between differ-

ent experimental replicates. The latter is likely to be more
feasible in the laboratory.
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APPENDIX A: SADDLE POINT EQUATIONS
FOR THE PARALLEL MODEL

We present the derivation of the saddle point equations for
the Kimura model. We look for a saddle point of the action
Eq. �10� in the coherent fields z��t� and z̄��t�. The first con-
dition is


S


z��t�
= −

� z̄�

�t
+ 
�t − T�z̄��T� − ���L − ��z̄�+1�t� + �z̄�−1�t�

− Lz̄��t�� − ���L − ��	+z̄�+1�t� + �	−z̄�−1 − ��L − ��	+

+ �	−�z̄��t�� −
1

N
�
�1=0

L

�
�2=0

L

Lf��1��1 + z̄�1
�t���z̄�1

�t�

− z̄�2
�t���
�1,�z�2

�t� + z�1
�t�
�2,�� = 0, �A1�

where T is the final integration time in Eq. �10�, which we
typically set as T=�. The solution which satisfies this
saddle-point condition is z̄�

c�t�=0, for 0� t�T.
The saddle point condition in the fields z̄��t� is


S


z̄��t�
= �z��0� −

n��0�
1 + z̄��0��
�t� +

�z�

�t
− ���L − � + 1�

� z�−1�t� + �� + 1�z�+1�t� − Lz��t�� − ���L − �

+ 1�	+z�−1�t� + �� + 1�	−z�+1�t� − ��L − ��	+

+ �	−�z��t�� −
1

N
�
�1=0

L

�
�2=0

L

Lf��1��
�1,��z̄�1
�t� − z̄�2

�t��

+ �1 + z̄�1
��
�1,� − 
�2,���z�1

�t�z�2
�t� = 0. �A2�

In combination with the solution z̄�
c�t�=0 obtained from Eq.

�A1�, Eq. �A2� provides the differential equation for the
probability distribution P��t�=z�

c�t� /N,

d

dt
P� = ���L − � + 1�P�−1 + �� + 1�P�+1 − LP�� + ��	+�L − �

+ 1�P�−1 + 	−�� + 1�P�+1 − ��L − ��	+ + �	−�P��

+ �r��� − �
��=0

L

r����P���P� �A3�

and the initial condition P��0�=n�
0 /N. In deriving Eq. �A3�

from Eq. �A2�, the property ��=0
L P��t�=1 was used, and we

introduce the notation r���=Lf���.
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FIG. 7. Fluctuations in the probability distribution, as predicted
from our theory Eqs. �25� and �26�, for the Eigen model and qua-
dratic fitness, at different horizontal gene transfer rates, �. Here, L
=200, k=4.0, and �=1. Fluctuations decrease by orders of magni-
tude with increasing horizontal gene transfer rate.
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FIG. 8. Probability distributions, as predicted from our theory,
for the Eigen model and quadratic fitness, at different recombina-
tion rates. Here, L=200, k=4.0, and �=1.
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APPENDIX B: FLUCTUATIONS IN THE PARALLEL
MODEL

We next consider the expansion of the action Eq. �10�
near the saddle-point Sc. For convenience, we define a dis-
crete time label k= t /�, with �→0. Fluctuations near the
saddle-point solution are given by 
z��k�=z��k�−z�

c�k�, and

z̄��k�= z̄��k�− z̄�

c�k�. This gives

S − Sc = �
�,��=0

L �
z̄��0�
z���0�
�,�� +
1

2
n�

0
z̄��0�
z̄���0�
�,��

+ �
k=1

t/�

�
z̄��k�
z���k�
�,�� − �
z̄��k�
z̄���k�

� �
�,��r���NP��k − 1� − r���NP��k − 1�P���k − 1���

+ �
k=1

t/�


z̄��k�
z���k − 1��− 
�,�� − ����L − � + 1�
�−1,��

+ �� + 1�
�+1,�� − L
�,��� − ����L − � + 1�	+
�−1,��

+ �� + 1�	−
�+1,�� − ��L − ��	+ + �	−�
�,��� − ���r���

− �
�1

r��1�P�1
�k − 1��
�,�� + �r��� − r�����P��k

− 1����
=

1

2
XT�−1X + O�X3� . �B1�

Here, we have defined the vector XT

= ��
z̄�0� ,
z�0�� , . . . , �
z̄�t /�� ,
z�t /����. The matrix �−1 is
banded tridiagonal, with

�−1 =�
�00

−1 − �01
−1 0 0 . . . 0

− �10
−1 �11

−1 − �12
−1 0 . . . 0

0 − �21
−1 �22

−1 − �23
−1 . . . 0

] � ]

. . . . . . �t/�,t/�
−1
� .

�B2�

Here,

�00
−1 = �N0 I

I 0
�, �N0��,�� = n�

0
�,��,

�k,k
−1 = �− �B�k − 1� I

I 0
�, k � 0,

�k,k−1
−1 = �0 I + �A�k − 1�

0 0
�

�k−1,k
−1 = � 0 0

I + �AT�k − 1� 0
� . �B3�

The matrices A and B are defined by

�A��,�� = 
�−1,���L − � + 1��� + �	+� + 
�,���Lf���

− �
�1

Lf��1�P�1
− ���L − ��	+ + �	−� − L�� + L�f���

− f�����P� + 
�+1,���� + 1��� + �	−� , �B4�

�B��,�� = 
�,��2Lf���NP� − L�f��� + f�����NP�P��. �B5�

Here, A is a symmetric matrix �AT�k���,��= �A�k����,�. By
standard matrix inversion, we obtain

��t/�� = ��−1�t/���−1

= � ��−1�t/� − 1�� �
0

0

]

− �t/�−1,t/�
−1

�
�0 0 . . . − �t/�,t/�−1

−1 � �t/�,t/�
−1

�
−1

.

�B6�

Calculating the inverse in Eq. �B6�, we obtain

���t/���t/�,t/� � bt/�,t/�

= ��t/�,t/�
−1 − �0 0 . . . − �t/�,t/�−1

−1 ����t/� − 1��

��
0

0

]

− �t/�−1,t/�
−1

��
−1

= ��t/�,t/�
−1 − �t/�,t/�−1

−1 bt/�−1,t/�−1�t/�−1,t/�
−1 �−1. �B7�

From this recursive equation, we find

b00 = ��00
−1�−1 = �0 I

I − N0 � ,

b11 = ��11
−1 − �10

−1b00�01
−1�−1

= �0 I

I �I + �A�0���− N0��I + �AT�0�� + �B�0� � .

�B8�

From Eq. �B8�, proceeding by induction, we prove that
the matrices bk possess the structure

bk,k = �0 I

I C�k� � , �B9�

and after the recursion relation

bk,k = ��k
−1 − �k,k−1

−1 bk−1,k−1�k−1,k
−1 �−1 �B10�

we obtain

C�k� = �I + �A�k − 1��C�k − 1��I + �AT�k − 1�� + �B�k − 1�
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C�0� = − N0. �B11�

In the continuous time limit �→0, Eq. �B11� becomes a
Lyapunov equation

d

dt
C = B + AC + CAT

C�0� = − N0 �B12�

with �N0��,��=
�,��n�
0.

APPENDIX C: SADDLE POINT EQUATIONS FOR THE
EIGEN MODEL

Now, we derive the saddle point equations for the Eigen
model. We look for a saddle point of the action Eq. �24� in
the coherent fields z��t� and z̄��t�. The first condition is


S


z��t�
= −

� z̄�

�t
+ 
�t − T�z̄��T� −

L

N
�1 −

�

L
�

� �
�1,�2,�3=0

L

�Q�2,�1
f��1��1 + z̄�1

�t���z̄�2
�t� − z̄�3

�t��

��
�1,�z�3
�t� + 
�3,�z�1

�t��� −
L

N
�

�1,�2,�3=0

L ��
�1,�2
d��3�

+
�

L
�Q�2,�1+1	+�L − �1� + Q�2,�1−1	−�1�f��1��

��1 + z̄�1
�t���z̄�2

�t� − z̄�3
�t���z�3

�t�
�1,� + z�1
�t�
�3,���

= 0, �C1�

where T is the total integration time in Eq. �24�, which we
typically set as T=�. This saddle-point condition is satisfied
by the solution z̄�

c�t�=0, for 0� t�T.
The saddle-point condition in the fields z̄��t� is


S


z̄��t�
=

�z�

�t
+ �z��0� −

n�
0

1 + z̄��0�
�
�t� −

L

N

� �1 −
�

L
� �

�1,�2,�3=0

L

�Q�2,�1
f��1��
�1,��z̄�2

�t� − z̄�3
�t��

+ �1 + z̄�1
�t���
�2,� − 
�3,���z�1

�t�z�3
�t��

−
L

N
�

�1,�2,�3

��
�1,�2
d��3� +

�

L
�Q�2,�1+1	+�L − �1�

+ Q�2,�1−1	−�1�f��1���
�1,��z̄�2
�t� − z̄�3

�t��

+ �1 + z̄�1
�t���
�2,� − 
�3,���z�1

�t�z�3
�t�� = 0. �C2�

In combination with the solution z̄�
c�t�=0 obtained from

Eq. �C1�, after Eq. �C2� we obtain the differential equation
for the probability distribution P��t�=z�

c�t� /N,

d

dt
P��t� = �1 −

�

L
�� �

��=0

L

Q�,��r����P���t� − P��t�

� �
��=0

L

r����P���t�� − P��t��d��� − �
��=0

L

P���t�

� d����� +
�

L��
��=0

L

�Q�,��+1	+�L − ���

+ Q�,��−1	−���r����P���t� − P��t� �
��=0

L

�	+�L − ���

+ 	−���r����P���t�� �C3�

and the initial condition P��0�=n�
0 /N. In deriving Eq. �C3�

from Eq. �C2�, we used the properties: ��=0
L P�=1, and

��=0
L Q�,��=1.

APPENDIX D: FLUCTUATIONS IN THE EIGEN MODEL

Now, let us consider the expansion of the action Eq. �24�
for the Eigen model near the saddle point, with fluctuations
near the saddle-point solution given by 
z��k�=z��k�−z�

c�k�,
and 
z̄��k�= z̄��k�− z̄�

c�k�.

S − Sc = �
�=0

L �
z̄��0�
z��0� +
1

2
n�

0
z̄��0�
z̄��0� + �
k=1

t/�


z̄��k�

��
z��k� − 
z��k − 1���
−

�

N
�
k=1

t/� ��1 −
�

L
� �

�,��,��

Q��,�r����
z̄���k� − 
z̄���k��

� �
z̄��k�N2P�P�� + NP�
z���k − 1� + NP��
z��k

− 1�� + �
�,��

d�����
z̄��k� − 
z̄���k���
z̄��k�N2P�P��

+ NP�
z���k − 1� + NP��
z��k − 1���
−

�

L

�

N�
k=1

t/�

�
�,��,��

�Q��,�+1	+�L − �� + Q��,�−1	−��r���

��
z̄���k� − 
z̄���k���
z̄��k�N2P�P�� + NP�
z���k − 1�

+ NP��
z��k − 1�� + O��
z̄,
z�3�

=
1

2
XT�−1X + O�X3� . �D1�

Here, we defined XT= ��
z̄�0� ,
z�0�� , . . . , �
z̄�t /�� ,
z�t /����.
The matrix �−1 is tridiagonal by blocks, as in the case of the
parallel model. A similar analysis holds for the Eigen model
as well, with matrices A and B defined as
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L−1�A��,�� = �1 −
�

L
�� �

��=0

L

Q�,��f����P�� + Q�,��f���� − 
�,�� �
��=0

L

f����P�� − f����P�� + �d���� − d����P� + 
�,����
�1=0

L

d��1�P�1

− d���� +
�

L��
��=0

L

�Q�,��−1	−�� + Q�,��+1	+�L − ����f����P�� + �Q�,��−1	−�� + Q�,��+1	+�L − ����f����

− 
�,�� �
��=0

L

�	+�L − ��� + 	−���f����P�� − �	+�L − ��� + 	−���f����P�� , �D2�

L−1�B��,�� = N��1 −
�

L
��Q��,�f���P� + Q�,��f����P�� − �f��� + f�����P�P��� + 2��

�1=0

L

d��1�P�1�P�
�,��

+
�

L
��Q��,�+1	+�L − �� + Q��,�−1	−��f���P�� + �Q�,��+1	+�L − ��� + Q�,��−1	−���f����P�� − ��	+�L − �� + 	−��f���

+ �	+�L − ��� + 	−���f�����P�P�� − �d��� + d�����P�P��� . �D3�

A recursion relation identical to Eq. �B12� is obtained, which in the continuous time limit �→0 yields a Lyapunov equation
for the matrix C,

d

dt
C = B + AC + CAT �D4�

with initial condition C�,��=−
�,��n�
0.
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